A New Approach to the Study of Fixed Point Theory for Simulation Functions

Farshid Khojasteh ${ }^{\text {a }}$, Satish Shukla ${ }^{\text {b }}$, Stojan Radenovićc ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Arak-Branch, Islamic Azad University, Arak, Iran.
${ }^{b}$ Department of Applied Mathematics, Shri Vaishnav Institute of Technology and Science, Gram Baroli Sanwer Road, Indore 453331, India.
${ }^{c}$ Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia

Abstract

Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping. In this work, we introduce the mapping $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$, called the simulation function and the notion of \mathcal{Z}-contraction with respect to ζ which generalize the Banach contraction principle and unify several known types of contractions involving the combination of $d(T x, T y)$ and $d(x, y)$. The related fixed point theorems are also proved.

1. Introduction and Preliminaries

Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping, then T is called a contraction (Banach contraction) on X if

$$
d(T x, T y) \leq \lambda d(x, y) \text { for all } x, y \in X
$$

where λ is a real such that $\lambda \in[0,1)$. A point $x \in X$ is called a fixed point of T if $T x=x$.
The well known Banach contraction principle [1] ensures the existence and uniqueness of fixed point of a contraction on a complete metric space. After this interesting principle, several authors generalized this principle by introducing the various contractions on metric spaces (see, e.g., [2, 4-9]). Rhoades [8], in his work compare several contractions defined on metric spaces.

In this work, we introduce a mapping namely simulation function and the notion of \mathcal{Z}-contraction with respect to ζ. The \mathcal{Z}-contraction generalize the Banach contraction and unify several known type of contractions involving the combination of $d(T x, T y)$ and $d(x, y)$ and satisfies some particular conditions in complete metric spaces.

2. Main Results

In this section, we define the simulation function, give some examples and prove a related fixed point result.

[^0]Definition 2.1. Let $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ be a mapping, then ζ is called a simulation function if it satisfies the following conditions:
($\zeta 1) ~ \zeta(0,0)=0$;
(弓2) $\zeta(t, s)<s-t$ for all $t, s>0$;
(弓3) if $\left\{t_{n}\right\},\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}>0$ then

$$
\limsup _{n \rightarrow \infty} \zeta\left(t_{n}, s_{n}\right)<0
$$

We denote the set of all simulation functions by \mathcal{Z}.
Next, we give some examples of the simulation function.
Example 2.2. Let $\zeta_{i}:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}, i=1,2,3$ be defined by
(i) $\zeta_{1}(t, s)=\psi(s)-\phi(t)$ for all $t, s \in[0, \infty)$, where $\phi, \psi:[0, \infty) \rightarrow[0, \infty)$ are two continuous functions such that $\psi(t)=\phi(t)=0$ if and only if $t=0$ and $\psi(t)<t \leq \phi(t)$ for all $t>0$.
(ii) $\zeta_{2}(t, s)=s-\frac{f(t, s)}{g(t, s)}$ for all $t, s \in[0, \infty)$, where $f, g:[0, \infty) \rightarrow(0, \infty)$ are two continuous functions with respect to each variable such that $f(t, s)>g(t, s)$ for all $t, s>0$.
(iii) $\zeta_{3}(t, s)=s-\varphi(s)-t$ for all $t, s \in[0, \infty)$, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\varphi(t)=0$ if and only if $t=0$.
Then ζ_{i} for $i=1,2,3$ are simulation functions.
Definition 2.3. Let (X, d) be a metric space, $T: X \rightarrow X$ a mapping and $\zeta \in \mathcal{Z}$. Then T is called a \mathcal{Z}-contraction with respect to ζ if the following condition is satisfied

$$
\begin{equation*}
\zeta(d(T x, T y), d(x, y)) \geq 0 \text { for all } x, y \in X \tag{1}
\end{equation*}
$$

A simple example of \mathcal{Z}-contraction is the Banach contraction which can be obtained by taking $\lambda \in[0,1$) and $\zeta(t, s)=\lambda s-t$ for all $s, t \in[0, \infty)$ in above definition.

We now prove some properties of \mathcal{Z}-contractions defined on a metric space.
Remark 2.4. It is clear from the definition simulation function that $\zeta(t, s)<0$ for all $t \geq s>0$. Therefore, if T is a \mathcal{Z}-contraction with respect to $\zeta \in \mathcal{Z}$ then

$$
d(T x, T y)<d(x, y) \text { for all distinct } x, y \in X
$$

This shows that every \mathcal{Z}-contraction mapping is contractive, therefore it is continuous.
In the following lemma the uniqueness of fixed point of a \mathcal{Z}-contraction is proved.
Lemma 2.5. Let (X, d) be a metric space and $T: X \rightarrow X$ be a Z-contraction with respect to $\zeta \in \mathcal{Z}$. Then the fixed point of T in X is unique, provided it exists.

Proof. Suppose $u \in X$ be a fixed point of T. If possible, let $v \in X$ be another fixed point of T and it is distinct from u, that is, $T v=v$ and $u \neq v$. Now it follows from (1) that

$$
0 \leq \zeta(d(T u, T v), d(u, v))=\zeta(d(u, v), d(u, v))
$$

In view of Remark 2.4, above inequality yields a contradiction and proves result.
A self map T of a metric space (X, d) is said to be asymptotically regular at point $x \in X$ if $\lim _{n \rightarrow \infty} d\left(T^{n} x, T^{n+1} x\right)=0$ (see [3]).
The next lemma shows that a \mathcal{Z}-contraction is asymptotically regular at every point of X.

Lemma 2.6. Let (X, d) be a metric space and $T: X \rightarrow X$ be a \mathcal{Z}-contraction with respect to $\zeta \in \mathcal{Z}$. Then T is asymptotically regular at every $x \in X$.

Proof. Let $x \in X$ be arbitrary. If for some $p \in \mathbb{N}$ we have $T^{p} x=T^{p-1} x$, that is, $T y=y$, where $y=T^{p-1} x$, then $T^{n} y=T^{n-1} T y=T^{n-1} y=\ldots=T y=y$ for all $n \in \mathbb{N}$. Now for sufficient large $n \in \mathbb{N}$ we have

$$
\begin{aligned}
d\left(T^{n} x, T^{n+1} x\right) & =d\left(T^{n-p+1} T^{p-1} x, T^{n-p+2} T^{p-1} x\right)=d\left(T^{n-p+1} y, T^{n-p+2} y\right) \\
& =d(y, y)=0
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} d\left(T^{n} x, T^{n+1} x\right)=0$.
Suppose $T^{n} x \neq T^{n-1} x$, for all $n \in \mathbb{N}$, then it follows from (1) that

$$
\begin{aligned}
0 & \leq \zeta\left(d\left(T^{n+1} x, T^{n} x\right), d\left(T^{n} x, T^{n-1} x\right)\right) \\
& =\zeta\left(d\left(T T^{n} x, T T^{n-1} x\right), d\left(T^{n} x, T^{n-1} x\right)\right) \\
& \leq d\left(T^{n} x, T^{n-1} x\right)-d\left(T^{n+1} x, T^{n} x\right)
\end{aligned}
$$

The above inequality shows that $\left\{d\left(T^{n} x, T^{n-1} x\right)\right\}$ is a monotonically decreasing sequence of nonnegative reals and so it must be convergent. Let $\lim _{n \rightarrow \infty} d\left(T^{n} x, T^{n+1} x\right)=r \geq 0$. If $r>0$ then since T is \mathcal{Z}-contraction with respect to $\zeta \in \mathcal{Z}$ therefore by (弓3), we have

$$
0 \leq \limsup _{n \rightarrow \infty} \zeta\left(d\left(T^{n+1} x, T^{n} x\right), d\left(T^{n} x, T^{n-1} x\right)\right)<0
$$

This contradiction shows that $r=0$, that is, $\lim _{n \rightarrow \infty} d\left(T^{n} x, T^{n+1} x\right)=0$. Thus T is an asymptotically regular mapping at x.

The next lemma shows that the Picard sequence $\left\{x_{n}\right\}$ generated by a \mathcal{Z}-contraction is always bounded.
Lemma 2.7. Let (X, d) be a metric space and $T: X \rightarrow X$ be a Z-contraction with respect to ζ. Then the Picard sequence $\left\{x_{n}\right\}$ generated by T with initial value $x_{0} \in X$ is a bounded sequence, where $x_{n}=T x_{n-1}$ for all $n \in \mathbb{N}$.

Proof. Let $x_{0} \in X$ be arbitrary and $\left\{x_{n}\right\}$ be the Picard sequence, that is, $x_{n}=T x_{n-1}$ for all $n \in \mathbb{N}$. On the contrary, assume that $\left\{x_{n}\right\}$ is not bounded. Without loss of generality we can assume that $x_{n+p} \neq x_{n}$ for all $n, p \in \mathbb{N}$. Since $\left\{x_{n}\right\}$ is not bounded, there exists a subsequence $\left\{x_{n_{k}}\right\}$ such that $n_{1}=1$ and for each $k \in \mathbb{N}, n_{k+1}$ is the minimum integer such that

$$
d\left(x_{n_{k+1}}, x_{n_{k}}\right)>1
$$

and

$$
d\left(x_{m}, x_{n_{k}}\right) \leq 1 \text { for } n_{k} \leq m \leq n_{k+1}-1 .
$$

Therefore by the triangular inequality we have

$$
\begin{aligned}
1<d\left(x_{n_{k+1}}, x_{n_{k}}\right) & \leq d\left(x_{n_{k+1}}, x_{n_{k+1}-1}\right)+d\left(x_{n_{k+1}-1}, x_{n_{k}}\right) \\
& \leq d\left(x_{n_{k+1}}, x_{n_{k+1}-1}\right)+1
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using Lemma 2.6 we obtain

$$
\lim _{k \rightarrow \infty} d\left(x_{n_{k+1}}, x_{n_{k}}\right)=1
$$

By (1) we have $d\left(x_{n_{k+1}}, x_{n_{k}}\right) \leq d\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right)$, therefore using the triangular inequality we obtain

$$
\begin{aligned}
1<d\left(x_{n_{k+1}}, x_{n_{k}}\right) & \leq d\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right) \\
& \leq d\left(x_{n_{k+1}-1}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{n_{k}-1}\right) \\
& \leq 1+d\left(x_{n_{k}}, x_{n_{k}-1}\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using Lemma 2.6 we obtain

$$
\lim _{k \rightarrow \infty} d\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right)=1
$$

Now since T is a \mathcal{Z}-contraction with respect to $\zeta \in \mathcal{Z}$ therefore by (弓3), we have

$$
\begin{aligned}
0 & \leq \limsup _{k \rightarrow \infty} \zeta\left(d\left(T x_{n_{k+1}-1}, T x_{n_{k}-1}\right), d\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right)\right) \\
& =\limsup _{k \rightarrow \infty} \zeta\left(d\left(x_{n_{k+1}}, x_{n_{k}}\right), d\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right)\right)<0
\end{aligned}
$$

This contradiction proves result.
In the next theorem we prove the existence of fixed point of a \mathcal{Z}-contraction.
Theorem 2.8. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a Z-contraction with respect to ζ. Then T has a unique fixed point u in X and for every $x_{0} \in X$ the Picard sequence $\left\{x_{n}\right\}$, where $x_{n}=T x_{n-1}$ for all $n \in \mathbb{N}$ converges to the fixed point of T.
Proof. Let $x_{0} \in X$ be arbitrary and $\left\{x_{n}\right\}$ be the Picard sequence, that is, $x_{n}=T x_{n-1}$ for all $n \in \mathbb{N}$. We shall show that this sequence is a Cauchy sequence. For this, let

$$
C_{n}=\sup \left\{d\left(x_{i}, x_{j}\right): i, j \geq n\right\}
$$

Note that the sequence $\left\{C_{n}\right\}$ is a monotonically decreasing sequence of positive reals and by Lemma 2.7 the sequence $\left\{x_{n}\right\}$ is bounded, therefore $C_{n}<\infty$ for all $n \in \mathbb{N}$. Thus $\left\{C_{n}\right\}$ is monotonic bounded sequence, therefore convergent, that is, there exists $C \geq 0$ such that $\lim _{n \rightarrow \infty} C_{n}=C$. We shall show that $C=0$. If $C>0$ then by the definition of C_{n}, for every $k \in \mathbb{N}$ there exists n_{k}, m_{k} such that $m_{k}>n_{k} \geq k$ and

$$
C_{k}-\frac{1}{k}<d\left(x_{m_{k}}, x_{n_{k}}\right) \leq C_{k}
$$

Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}}\right)=C \tag{2}
\end{equation*}
$$

Using (1) and the triangular inequality we have

$$
\begin{aligned}
d\left(x_{m_{k}}, x_{n_{k}}\right) & \leq d\left(x_{m_{k}-1}, x_{n_{k}-1}\right) \\
& \leq d\left(x_{m_{k}-1}, x_{m_{k}}\right)+d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{n_{k}-1}\right)
\end{aligned}
$$

Using Lemma 2, (2) and letting $k \rightarrow \infty$ in the above inequality we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m_{k}-1}, x_{n_{k}-1}\right)=C \tag{3}
\end{equation*}
$$

Since T is a \mathcal{Z}-contraction with respect to $\zeta \in \mathcal{Z}$ therefore using (1), (2), (3) and (弓3), we have

$$
0 \leq \limsup _{k \rightarrow \infty} \zeta\left(d\left(x_{m_{k}-1}, x_{n_{k}-1}\right), d\left(x_{m_{k}}, x_{n_{k}}\right)\right)<0
$$

This contradiction proves that $C=0$ and so $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is a complete space, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=u$. We shall show that the point u is a fixed point of T. Suppose $T u \neq u$ then $d(u, T u)>0$. Again, using (1), ($\zeta 2$) and ($\zeta 3)$, we have

$$
\begin{aligned}
0 & \leq \limsup _{n \rightarrow \infty} \zeta\left(d\left(T x_{n}, T u\right), d\left(x_{n}, u\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}\left[d\left(x_{n}, u\right)-d\left(x_{n+1}, T u\right)\right] \\
& =-d(u, T u) .
\end{aligned}
$$

This contradiction shows that $d(u, T u)=0$, that is, $T u=u$. Thus u is a fixed point of T. Uniqueness of the fixed point follows from Lemma 2.5.

Following example shows that the above theorem is a proper generalization of Banach contraction principle.
Example 2.9. Let $X=[0,1]$ and $d: X \times X \rightarrow \mathbb{R}$ be defined by $d(x, y)=|x-y|$. Then (X, d) is a complete metric space. Define a mapping $T: X \rightarrow X$ as $T x=\frac{x}{x+1}$ for all $x \in X$. T is a continuous function but it is not a Banach contraction. But it is a \mathcal{Z}-contraction with respect to $\zeta \in \mathcal{Z}$, where

$$
\zeta(t, s)=\frac{s}{s+1}-t \text { for all } t, s \in[0, \infty)
$$

Indeed, if $x, y \in X$, then

$$
\begin{aligned}
\zeta(d(T x, T y), d(x, y)) & =\frac{d(x, y)}{1+d(x, y)}-d(T x, T y) \\
& =\frac{|x-y|}{1+|x-y|}-\left|\frac{x}{x+1}-\frac{y}{y+1}\right| \\
& =\frac{|x-y|}{1+|x-y|}-\left|\frac{|x-y|}{(x+1)(y+1)}\right| \geq 0
\end{aligned}
$$

Note that, all the conditions of Theorem 2.8 are satisfied and T has a unique fixed point $u=0 \in X$.
In the following corollaries we obtain some known and some new results in fixed point theory via the simulation function.

Corollary 2.10 (Banach Contraction principle [1]). Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a mapping satisfying the following condition:

$$
d(T x, T y) \leq \lambda d(x, y) \text { for all } x, y \in X
$$

where $\lambda \in[0,1)$. Then T has a unique fixed point in X.
Proof. Define $\zeta_{B}:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\zeta_{B}(t, s)=\lambda s-t \text { for all } s, t \in[0, \infty)
$$

Note that, the mapping T is a \mathcal{Z}-contraction with respect to $\zeta_{B} \in \mathcal{Z}$. Therefore the result follows by taking $\zeta=\zeta_{B}$ in Theorem 2.8.

Corollary 2.11 (Rhoades type). Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a mapping satisfying the following condition:

$$
d(T x, T y) \leq d(x, y)-\varphi(d(x, y)) \text { for all } x, y \in X
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is lower semi continuous function and $\varphi^{-1}(0)=\{0\}$. Then T has a unique fixed point in X.
Proof. Define $\zeta_{R}:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\zeta_{R}(t, s)=s-\varphi(s)-t \text { for all } s, t \in[0, \infty)
$$

Note that, the mapping T is a \mathcal{Z}-contraction with respect to $\zeta_{R} \in \mathcal{Z}$. Therefore the result follows by taking $\zeta=\zeta_{R}$ in Theorem 2.8.

Remark 2.12. Note that, in the [9] the function φ is assumed to be continuous and nondecreasing and $\lim _{t \rightarrow \infty} \psi(t)=\infty$. In Corollary 2.11 we replace these conditions by lower semi continuity of φ. Therefore our result is stronger than the original version of Rhoades [9].

Corollary 2.13. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a mapping. Suppose that for every $x, y \in X$, $d(T x, T y) \leq \varphi(d(x, y)) d(x, y)$
for all $x, y \in X$, where $\varphi:[0,+\infty) \rightarrow[0,1)$ be a mapping such that $\limsup _{t \rightarrow r^{+}} \varphi(t)<1$, for all $r>0$. Then T has a unique fixed point.

Proof. Define $\zeta_{T}:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\zeta_{T}(t, s)=s \varphi(s)-t \text { for all } s, t \in[0, \infty)
$$

Note that, the mapping T is a \mathcal{Z}-contraction with respect to $\zeta_{T} \in \mathcal{Z}$. Therefore the result follows by taking $\zeta=\zeta_{T}$ in Theorem 2.8.

Corollary 2.14. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a mapping. Suppose that for every $x, y \in X$,

$$
d(T x, T y) \leq \eta(d(x, y))
$$

for all $x, y \in X$, where $\eta:[0,+\infty) \rightarrow[0,+\infty)$ be an upper semi continuous mapping such that $\eta(t)<t$ for all $t>0$ and $\eta(0)=0$. Then T has a unique fixed point.

Proof. Define $\zeta_{B W}:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\zeta_{B W}(t, s)=\eta(s)-t \text { for all } s, t \in[0, \infty)
$$

Note that, the mapping T is a \mathcal{Z}-contraction with respect to $\zeta_{B W} \in \mathcal{Z}$. Therefore the result follows by taking $\zeta=\zeta_{B W}$ in Theorem 2.8.

Corollary 2.15. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a mapping satisfying the following condition:

$$
\int_{0}^{d(T x, T y)} \phi(t) d t \leq d(x, y) \text { for all } x, y \in X
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a function such that $\int_{0}^{\epsilon} \phi(t) d t$ exists and $\int_{0}^{\epsilon} \phi(t) d t>\epsilon$, for each $\epsilon>0$. Then T has a unique fixed point in X.

Proof. Define $\zeta_{K}:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\zeta_{K}(t, s)=s-\int_{0}^{t} \phi(u) d u \text { for all } s, t \in[0, \infty)
$$

Then, $\zeta_{K} \in \mathcal{Z}$. Therefore the result follows by taking $\zeta=\zeta_{K}$ in Theorem 2.8.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3 (1922), 133-181.
[2] D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
[3] F. E. Browder, W. V. Petrysyn, The solution by iteration of nonlinear functional equation in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-576.
[4] N. Hussain, Zoran Kadelburg, Stojan Radenovic and Falleh R. Al-Solamy, Comparison functions and fixed point results in partial metric spaces, Abstract and Applied Analysis, vol. 2012, Article ID 605781, 15 pp.
[5] N. Hussain, M. A. Kutbi, S. Khaleghizadeh and P. Salimi, Discussions on recent results for α - ψ-contractive mappings, Abstract and Applied Analysis, Vol. 2014, Article ID 456482, 13 pp.
[6] F. Khojasteh, V. Rakočević, Some new common fixed point results for generalized contractive multi-valued non-self-mappings, Appl. Math. Lett. 25 (2012), 287-293.
[7] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188.
[8] B. E. Rhoades, A comparison of various definitions of contractive mappings, transactions of the american mathematical society, 224 (1977), 257-290.
[9] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. (TMA) 47 (2001), 2683-2693.

[^0]: 2010 Mathematics Subject Classification. Primary 54H25 ; Secondary 47H10, 54C30
 Keywords. Contraction mapping; Simulation function; Z-contraction; Fixed point.
 Received: 06 October 2013; Accepted: 15 April 2015
 Communicated by Vladimir Rakočević
 Research supported by Islamic Azad University of Arak
 Email addresses: $f-\mathrm{khoj}$ aste@iau-arak.ac.ir (Farshid Khojasteh), satishmathematics@yahoo.co.in (Satish Shukla), radens@beotel.net (Stojan Radenović)

