Filomat 29:6 (2015), 1189–1194 DOI 10.2298/FIL1506189K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A New Approach to the Study of Fixed Point Theory for Simulation Functions

Farshid Khojasteh^a, Satish Shukla^b, Stojan Radenović^c

^aDepartment of Mathematics, Arak-Branch, Islamic Azad University, Arak, Iran. ^bDepartment of Applied Mathematics, Shri Vaishnav Institute of Technology and Science, Gram Baroli Sanwer Road, Indore 453331, India. ^cFaculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11 120 Beograd, Serbia

Abstract. Let (X, d) be a metric space and $T: X \to X$ be a mapping. In this work, we introduce the mapping $\zeta: [0, \infty) \times [0, \infty) \to \mathbb{R}$, called the simulation function and the notion of Z-contraction with respect to ζ which generalize the Banach contraction principle and unify several known types of contractions involving the combination of d(Tx, Ty) and d(x, y). The related fixed point theorems are also proved.

1. Introduction and Preliminaries

Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping, then T is called a contraction (Banach contraction) on X if

$$d(Tx, Ty) \leq \lambda d(x, y)$$
 for all $x, y \in X$,

where λ is a real such that $\lambda \in [0, 1)$. A point $x \in X$ is called a fixed point of *T* if Tx = x.

The well known Banach contraction principle [1] ensures the existence and uniqueness of fixed point of a contraction on a complete metric space. After this interesting principle, several authors generalized this principle by introducing the various contractions on metric spaces (see, e.g., [2, 4–9]). Rhoades [8], in his work compare several contractions defined on metric spaces.

In this work, we introduce a mapping namely simulation function and the notion of Z-contraction with respect to ζ . The Z-contraction generalize the Banach contraction and unify several known type of contractions involving the combination of d(Tx, Ty) and d(x, y) and satisfies some particular conditions in complete metric spaces.

2. Main Results

In this section, we define the simulation function, give some examples and prove a related fixed point result.

²⁰¹⁰ Mathematics Subject Classification. Primary 54H25 ; Secondary 47H10, 54C30

Keywords. Contraction mapping; Simulation function; *Z*-contraction; Fixed point.

Received: 06 October 2013; Accepted: 15 April 2015

Communicated by Vladimir Rakočević

Research supported by Islamic Azad University of Arak

Email addresses: f-khojaste@iau-arak.ac.ir (Farshid Khojasteh), satishmathematics@yahoo.co.in (Satish Shukla),

radens@beotel.net (Stojan Radenović)

Definition 2.1. Let ζ : $[0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ be a mapping, then ζ is called a simulation function if it satisfies the following conditions:

 $(\zeta 1) \zeta(0,0) = 0;$

- (ζ 2) ζ (*t*,*s*) < *s t* for all *t*,*s* > 0;
- (ζ 3) *if* { t_n }, { s_n } are sequences in (0, ∞) such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0$ then

 $\limsup_{n\to\infty}\zeta(t_n,s_n)<0.$

We denote the set of all simulation functions by \mathcal{Z} .

Next, we give some examples of the simulation function.

Example 2.2. Let ζ_i : $[0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$, i = 1, 2, 3 be defined by

- (i) $\zeta_1(t,s) = \psi(s) \phi(t)$ for all $t, s \in [0, \infty)$, where $\phi, \psi: [0, \infty) \to [0, \infty)$ are two continuous functions such that $\psi(t) = \phi(t) = 0$ if and only if t = 0 and $\psi(t) < t \le \phi(t)$ for all t > 0.
- (ii) $\zeta_2(t,s) = s \frac{f(t,s)}{g(t,s)}t$ for all $t,s \in [0,\infty)$, where $f,g:[0,\infty) \to (0,\infty)$ are two continuous functions with respect to each variable such that f(t,s) > q(t,s) for all t,s > 0.
- (iii) $\zeta_3(t,s) = s \varphi(s) t$ for all $t, s \in [0, \infty)$, where $\varphi: [0, \infty) \to [0, \infty)$ is a continuous function such that $\varphi(t) = 0$ if and only if t = 0.

Then ζ_i *for* i = 1, 2, 3 *are simulation functions.*

Definition 2.3. Let (X, d) be a metric space, $T: X \to X$ a mapping and $\zeta \in \mathbb{Z}$. Then T is called a \mathbb{Z} -contraction with respect to ζ if the following condition is satisfied

$$\zeta(d(Tx, Ty), d(x, y)) \ge 0 \text{ for all } x, y \in X.$$
(1)

A simple example of \mathbb{Z} -contraction is the Banach contraction which can be obtained by taking $\lambda \in [0, 1)$ and $\zeta(t, s) = \lambda s - t$ for all $s, t \in [0, \infty)$ in above definition.

We now prove some properties of \mathcal{Z} -contractions defined on a metric space.

Remark 2.4. It is clear from the definition simulation function that $\zeta(t,s) < 0$ for all $t \ge s > 0$. Therefore, if *T* is a *Z*-contraction with respect to $\zeta \in \mathbb{Z}$ then

$$d(Tx, Ty) < d(x, y)$$
 for all distinct $x, y \in X$.

This shows that every Z-contraction mapping is contractive, therefore it is continuous.

In the following lemma the uniqueness of fixed point of a Z-contraction is proved.

Lemma 2.5. Let (X, d) be a metric space and $T: X \to X$ be a \mathbb{Z} -contraction with respect to $\zeta \in \mathbb{Z}$. Then the fixed point of T in X is unique, provided it exists.

Proof. Suppose $u \in X$ be a fixed point of *T*. If possible, let $v \in X$ be another fixed point of *T* and it is distinct from *u*, that is, Tv = v and $u \neq v$. Now it follows from (1) that

$$0 \leq \zeta(d(Tu, Tv), d(u, v)) = \zeta(d(u, v), d(u, v)).$$

In view of Remark 2.4, above inequality yields a contradiction and proves result. \Box

A self map *T* of a metric space (*X*, *d*) is said to be asymptotically regular at point $x \in X$ if $\lim_{n \to \infty} d(T^n x, T^{n+1} x) = 0$ (see [3]).

The next lemma shows that a \mathcal{Z} -contraction is asymptotically regular at every point of X.

Lemma 2.6. Let (X, d) be a metric space and $T: X \to X$ be a \mathbb{Z} -contraction with respect to $\zeta \in \mathbb{Z}$. Then T is asymptotically regular at every $x \in X$.

Proof. Let $x \in X$ be arbitrary. If for some $p \in \mathbb{N}$ we have $T^p x = T^{p-1}x$, that is, Ty = y, where $y = T^{p-1}x$, then $T^n y = T^{n-1}Ty = T^{n-1}y = \ldots = Ty = y$ for all $n \in \mathbb{N}$. Now for sufficient large $n \in \mathbb{N}$ we have

$$d(T^{n}x, T^{n+1}x) = d(T^{n-p+1}T^{p-1}x, T^{n-p+2}T^{p-1}x) = d(T^{n-p+1}y, T^{n-p+2}y)$$

= $d(y, y) = 0,$

Therefore, $\lim_{n \to \infty} d(T^n x, T^{n+1} x) = 0.$

Suppose $T^n x \neq T^{n-1}x$, for all $n \in \mathbb{N}$, then it follows from (1) that

$$0 \leq \zeta(d(T^{n+1}x, T^n x), d(T^n x, T^{n-1}x)) \\ = \zeta(d(TT^n x, TT^{n-1}x), d(T^n x, T^{n-1}x)) \\ < d(T^n x, T^{n-1}x) - d(T^{n+1}x, T^n x).$$

The above inequality shows that $\{d(T^nx, T^{n-1}x)\}$ is a monotonically decreasing sequence of nonnegative reals and so it must be convergent. Let $\lim_{n \to \infty} d(T^nx, T^{n+1}x) = r \ge 0$. If r > 0 then since *T* is *Z*-contraction with respect to $\zeta \in \mathbb{Z}$ therefore by (ζ 3), we have

$$0 \leq \limsup_{n \to \infty} \zeta(d(T^{n+1}x, T^nx), d(T^nx, T^{n-1}x)) < 0$$

This contradiction shows that r = 0, that is, $\lim_{n \to \infty} d(T^n x, T^{n+1} x) = 0$. Thus *T* is an asymptotically regular mapping at *x*.

The next lemma shows that the Picard sequence $\{x_n\}$ generated by a \mathcal{Z} -contraction is always bounded.

Lemma 2.7. Let (X, d) be a metric space and $T: X \to X$ be a \mathbb{Z} -contraction with respect to ζ . Then the Picard sequence $\{x_n\}$ generated by T with initial value $x_0 \in X$ is a bounded sequence, where $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$.

Proof. Let $x_0 \in X$ be arbitrary and $\{x_n\}$ be the Picard sequence, that is, $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$. On the contrary, assume that $\{x_n\}$ is not bounded. Without loss of generality we can assume that $x_{n+p} \neq x_n$ for all $n, p \in \mathbb{N}$. Since $\{x_n\}$ is not bounded, there exists a subsequence $\{x_{n_k}\}$ such that $n_1 = 1$ and for each $k \in \mathbb{N}$, n_{k+1} is the minimum integer such that

$$d(x_{n_{k+1}}, x_{n_k}) > 1$$

and

$$d(x_m, x_{n_k}) \le 1$$
 for $n_k \le m \le n_{k+1} - 1$.

Therefore by the triangular inequality we have

$$1 < d(x_{n_{k+1}}, x_{n_k}) \le d(x_{n_{k+1}}, x_{n_{k+1}-1}) + d(x_{n_{k+1}-1}, x_{n_k}) \\ \le d(x_{n_{k+1}}, x_{n_{k+1}-1}) + 1.$$

Letting $k \rightarrow \infty$ and using Lemma 2.6 we obtain

$$\lim_{k\to\infty}d(x_{n_{k+1}},x_{n_k})=1.$$

By (1) we have $d(x_{n_{k+1}}, x_{n_k}) \le d(x_{n_{k+1}-1}, x_{n_k-1})$, therefore using the triangular inequality we obtain

$$1 < d(x_{n_{k+1}}, x_{n_k}) \le d(x_{n_{k+1}-1}, x_{n_k-1})$$

$$\le d(x_{n_{k+1}-1}, x_{n_k}) + d(x_{n_k}, x_{n_k-1})$$

$$\le 1 + d(x_{n_k}, x_{n_k-1}).$$

Letting $k \rightarrow \infty$ and using Lemma 2.6 we obtain

$$\lim_{k \to \infty} d(x_{n_{k+1}-1}, x_{n_k-1}) = 1$$

Now since *T* is a \mathbb{Z} -contraction with respect to $\zeta \in \mathbb{Z}$ therefore by (ζ 3), we have

- $\leq \lim \sup \zeta(d(Tx_{n_{k+1}-1}, Tx_{n_k-1}), d(x_{n_{k+1}-1}, x_{n_k-1}))$ 0 $\limsup \zeta(d(x_{n_{k+1}}, x_{n_k}), d(x_{n_{k+1}-1}, x_{n_k-1})) < 0$
 - $k \rightarrow \infty$

This contradiction proves result. \Box

In the next theorem we prove the existence of fixed point of a Z-contraction.

Theorem 2.8. Let (X, d) be a complete metric space and $T: X \to X$ be a \mathbb{Z} -contraction with respect to ζ . Then T has a unique fixed point u in X and for every $x_0 \in X$ the Picard sequence $\{x_n\}$, where $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$ converges to the fixed point of T.

Proof. Let $x_0 \in X$ be arbitrary and $\{x_n\}$ be the Picard sequence, that is, $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$. We shall show that this sequence is a Cauchy sequence. For this, let

$$C_n = \sup\{d(x_i, x_j): i, j \ge n\}.$$

Note that the sequence $\{C_n\}$ is a monotonically decreasing sequence of positive reals and by Lemma 2.7 the sequence $\{x_n\}$ is bounded, therefore $C_n < \infty$ for all $n \in \mathbb{N}$. Thus $\{C_n\}$ is monotonic bounded sequence, therefore convergent, that is, there exists $C \ge 0$ such that $\lim_{n \to \infty} C_n = C$. We shall show that C = 0. If C > 0then by the definition of C_n , for every $k \in \mathbb{N}$ there exists n_k , m_k such that $m_k > n_k \ge k$ and

$$C_k-\frac{1}{k} < d(x_{m_k},x_{n_k}) \leq C_k.$$

Hence

$$\lim_{k \to \infty} d(x_{m_k}, x_{n_k}) = C.$$
⁽²⁾

Using (1) and the triangular inequality we have

 $d(x_{m_k}, x_{n_k}) \leq d(x_{m_k-1}, x_{n_k-1})$ $\leq d(x_{m_k-1}, x_{m_k}) + d(x_{m_k}, x_{n_k}) + d(x_{n_k}, x_{n_k-1}).$

Using Lemma 2, (2) and letting $k \rightarrow \infty$ in the above inequality we obtain

$$\lim_{k \to \infty} d(x_{m_k - 1}, x_{n_k - 1}) = C.$$
(3)

Since *T* is a \mathbb{Z} -contraction with respect to $\zeta \in \mathbb{Z}$ therefore using (1), (2), (3) and (ζ 3), we have

$$0 \leq \limsup_{k \to \infty} \zeta(d(x_{m_k-1}, x_{n_k-1}), d(x_{m_k}, x_{n_k})) < 0$$

This contradiction proves that C = 0 and so $\{x_n\}$ is a Cauchy sequence. Since X is a complete space, there exists $u \in X$ such that $\lim_{n \to \infty} x_n = u$. We shall show that the point *u* is a fixed point of *T*. Suppose $Tu \neq u$ then d(u, Tu) > 0. Again, using (1), (ζ 2) and (ζ 3), we have

- $0 \leq \limsup \zeta(d(Tx_n, Tu), d(x_n, u))$ $n \rightarrow \infty$
 - $\leq \lim \sup[d(x_n, u) d(x_{n+1}, Tu)]$ $n \rightarrow \infty$ = -d(u, Tu).

This contradiction shows that d(u, Tu) = 0, that is, Tu = u. Thus u is a fixed point of T. Uniqueness of the fixed point follows from Lemma 2.5. \Box

1192

Following example shows that the above theorem is a proper generalization of Banach contraction principle.

Example 2.9. Let X = [0, 1] and $d: X \times X \to \mathbb{R}$ be defined by d(x, y) = |x - y|. Then (X, d) is a complete metric space. Define a mapping $T: X \to X$ as $Tx = \frac{x}{x+1}$ for all $x \in X$. T is a continuous function but it is not a Banach contraction. But it is a \mathbb{Z} -contraction with respect to $\zeta \in \mathbb{Z}$, where

$$\zeta(t,s) = \frac{s}{s+1} - t \text{ for all } t, s \in [0,\infty).$$

Indeed, if $x, y \in X$, then

$$\begin{aligned} \zeta(d(Tx,Ty),d(x,y)) &= \frac{d(x,y)}{1+d(x,y)} - d(Tx,Ty) \\ &= \frac{|x-y|}{1+|x-y|} - |\frac{x}{x+1} - \frac{y}{y+1}| \\ &= \frac{|x-y|}{1+|x-y|} - |\frac{|x-y|}{(x+1)(y+1)}| \ge 0 \end{aligned}$$

Note that, all the conditions of Theorem 2.8 are satisfied and T has a unique fixed point $u = 0 \in X$.

In the following corollaries we obtain some known and some new results in fixed point theory via the simulation function.

Corollary 2.10 (Banach Contraction principle [1]). *Let* (X, d) *be a complete metric space and* $T: X \rightarrow X$ *be a mapping satisfying the following condition:*

 $d(Tx, Ty) \leq \lambda d(x, y)$ for all $x, y \in X$,

where $\lambda \in [0, 1)$. Then T has a unique fixed point in X.

Proof. Define $\zeta_B \colon [0, \infty) \times [0, \infty) \to \mathbb{R}$ by

 $\zeta_B(t,s) = \lambda s - t$ for all $s, t \in [0, \infty)$.

Note that, the mapping *T* is a \mathbb{Z} -contraction with respect to $\zeta_B \in \mathbb{Z}$. Therefore the result follows by taking $\zeta = \zeta_B$ in Theorem 2.8. \Box

Corollary 2.11 (Rhoades type). *Let* (*X*, *d*) *be a complete metric space and* $T: X \rightarrow X$ *be a mapping satisfying the following condition:*

 $d(Tx, Ty) \le d(x, y) - \varphi(d(x, y))$ for all $x, y \in X$,

where $\varphi : [0, \infty) \to [0, \infty)$ is lower semi continuous function and $\varphi^{-1}(0) = \{0\}$. Then T has a unique fixed point in X.

Proof. Define $\zeta_R \colon [0, \infty) \times [0, \infty) \to \mathbb{R}$ by

 $\zeta_R(t,s) = s - \varphi(s) - t$ for all $s, t \in [0, \infty)$.

Note that, the mapping *T* is a \mathbb{Z} -contraction with respect to $\zeta_R \in \mathbb{Z}$. Therefore the result follows by taking $\zeta = \zeta_R$ in Theorem 2.8. \Box

Remark 2.12. Note that, in the [9] the function φ is assumed to be continuous and nondecreasing and $\lim_{t\to\infty} \psi(t) = \infty$. In Corollary 2.11 we replace these conditions by lower semi continuity of φ . Therefore our result is stronger than the original version of Rhoades [9]. **Corollary 2.13.** Let (X, d) be a complete metric space and $T : X \to X$ be a mapping. Suppose that for every $x, y \in X$,

$$d(Tx, Ty) \le \varphi(d(x, y))d(x, y)$$

for all $x, y \in X$, where $\varphi : [0, +\infty) \to [0, 1)$ be a mapping such that $\limsup_{t \to r^+} \varphi(t) < 1$, for all r > 0. Then T has a unique fixed point.

Proof. Define $\zeta_T \colon [0, \infty) \times [0, \infty) \to \mathbb{R}$ by

 $\zeta_T(t,s) = s\varphi(s) - t$ for all $s, t \in [0, \infty)$.

Note that, the mapping *T* is a \mathbb{Z} -contraction with respect to $\zeta_T \in \mathbb{Z}$. Therefore the result follows by taking $\zeta = \zeta_T$ in Theorem 2.8. \Box

Corollary 2.14. Let (X, d) be a complete metric space and $T : X \to X$ be a mapping. Suppose that for every $x, y \in X$,

 $d(Tx, Ty) \le \eta(d(x, y))$

for all $x, y \in X$, where $\eta : [0, +\infty) \rightarrow [0, +\infty)$ be an upper semi continuous mapping such that $\eta(t) < t$ for all t > 0 and $\eta(0) = 0$. Then T has a unique fixed point.

Proof. Define ζ_{BW} : $[0, \infty) \times [0, \infty) \to \mathbb{R}$ by

 $\zeta_{BW}(t,s) = \eta(s) - t \text{ for all } s, t \in [0,\infty).$

Note that, the mapping *T* is a \mathbb{Z} -contraction with respect to $\zeta_{BW} \in \mathbb{Z}$. Therefore the result follows by taking $\zeta = \zeta_{BW}$ in Theorem 2.8. \Box

Corollary 2.15. Let (X, d) be a complete metric space and $T: X \to X$ be a mapping satisfying the following condition:

 $\int_0^{d(Tx,Ty)}\phi(t)dt\leq d(x,y)\ for\ all\ x,y\in X,$

where $\varphi: [0, \infty) \to [0, \infty)$ is a function such that $\int_0^{\varepsilon} \phi(t) dt$ exists and $\int_0^{\varepsilon} \phi(t) dt > \varepsilon$, for each $\varepsilon > 0$. Then T has a unique fixed point in X.

Proof. Define $\zeta_K \colon [0, \infty) \times [0, \infty) \to \mathbb{R}$ by

$$\zeta_K(t,s) = s - \int_0^t \phi(u) du \text{ for all } s, t \in [0,\infty)$$

Then, $\zeta_K \in \mathbb{Z}$. Therefore the result follows by taking $\zeta = \zeta_K$ in Theorem 2.8. \Box

References

- S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3 (1922), 133-181.
- [2] D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
- [3] F. E. Browder, W. V. Petrysyn, The solution by iteration of nonlinear functional equation in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-576.

[4] N. Hussain, Zoran Kadelburg, Stojan Radenovic and Falleh R. Al-Solamy, Comparison functions and fixed point results in partial metric spaces, Abstract and Applied Analysis, vol. 2012, Article ID 605781, 15 pp.

- [5] N. Hussain, M. A. Kutbi, S. Khaleghizadeh and P. Salimi, Discussions on recent results for α-ψ-contractive mappings, Abstract and Applied Analysis, Vol. 2014, Article ID 456482, 13 pp.
- [6] F. Khojasteh, V. Rakočević, Some new common fixed point results for generalized contractive multi-valued non-self-mappings, Appl. Math. Lett. 25 (2012), 287–293.
- [7] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188.
- [8] B. E. Rhoades, A comparison of various definitions of contractive mappings, transactions of the american mathematical society, 224 (1977), 257-290.
- [9] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. (TMA) 47 (2001), 2683-2693.